

IIInnntttrrroooddduuuccctttiiiooonnn
tttooo

CCC++++++

TTTrrreeennntttooonnn CCCooommmpppuuuttteeerrr FFFeeessstttiiivvvaaalll
MMMaaayyy 111sssttt &&& 222nnnddd,,, 222000000444

MMMiiiccchhhaaaeeelll PPP... RRReeedddllliiiccchhh
SSSeeennniiiooorrr RRReeessseeeaaarrrccchhh TTTeeeccchhhnnniiiccciiiaaannn

EEExxxxxxooonnnMMMooobbbiiilll RRReeessseeeaaarrrccchhh &&& EEEnnngggiiinnneeeeeerrriiinnnggg
mmmiiiccchhhaaaeeelll...ppp...rrreeedddllliiiccchhh@@@eeexxxxxxooonnnmmmooobbbiiilll...cccooommm

 2

 Table of Contents

TABLE OF CONTENTS...2

INTRODUCTION..3

EVOLUTION OF C++ ..3

SOME FEATURES OF C++...3

Pass-By-Reference ...3
Operator Overloading..4
Generic Programming ...4
Exception Handling..4
Namespaces..4
Default Arguments ...4

OBJECT-ORIENTED PROGRAMMING..5

Programming Paradigms...5
Some Object-Oriented Programming (OOP) Definitions ..5
Main Attributes of OOP ...6
Data Encapsulation..6
Data Abstraction..6
Inheritance ...6
Polymorphism ..6
Advantages of OOP..6

SOME C++ KEYWORDS...7

BASIC I/O DIFFERENCES BETWEEN C AND C++...7

Sending Formatted Output to the Standard Output (stdout) Device ...7
Obtaining Formatted Input from the Standard Input (stdin) Device ...7

C++ CLASSES ...8

Default Constructors..9
Primary Constructors ..9
Copy Constructors ...10

CLASS INSTANTIATION ...10

Dynamic Instantiation..10
Static Instantiation ...10

POPULAR COMPILERS ...11

REFERENCES FOR FURTHER READING ...11

 3

1 Introduction

This document is an introduction to the C++ programming language. C++ is an extension of the C programming language,
which means that all of the C library functions can be used in a C++ application. C++ was finally standardized in June 1998,
but its history can be traced back almost 20 years. This document will begin with how C++ has evolved over the years and
introduce some of the language's features. Since C++ is an object-oriented programming language, it is important to
understand the concepts of object-oriented programming. The remainder of this document will discuss object-oriented
programming, C++ classes and how they are implemented, introduce some new keywords, and mention some basic I/O
differences between C and C++.

An example C++ application was developed to demonstrate the content described in this document and the C++ Advanced
Features document. The application encapsulates sports data such as team name, wins, losses, etc. The source code can be
obtained from http://www.tcf-nj.org/ or http://www.redlich.net/tcf/.

2 Evolution of C++

C++ was originally known as “C with Classes.” Bjarne Stroustrup from AT&T Laboratories developed the language in 1980.
Bjarne needed to add speed to simulations that were written in Simula-67. Since C was the fastest procedural language, he
decided to add classes, function argument type checking and conversion, and other features to it. Around the 1983/1984 time
frame, virtual functions and operator overloading were added to the language, and it was decided that “C with Classes” be
renamed to C++. The language became available to the public in 1985 after a few refinements were made. Templates and
exception handling were added to C++ in 1989. The Standard Template Library (STL) was developed by Hewlett-Packard in
1994, and was ultimately added to the draft C++ standard. The final draft was accepted by the X3J16 subcommittee in
November 1997, and received final approval from the International Standards Organization (ISO) in June 1998 to officially
declare C++ a standard.

3 Some Features of C++

C++ is an object-oriented programming (OOP) language. It offers all of the advantages of OOP by allowing the developer to
create user-defined types for modeling real world situations. However, the real power within C++ is contained in its features.
Since the scope of this document is strictly introductory, this chapter only briefly describes some of the features built-in to
the language. A detailed overview of these features can be found in the C++ Intermediate and Advanced Features
document.

Pass-By-Reference
Arguments passed to functions are strictly pass-by-value in C. That is, only a copy of the argument is passed to a function.
If the argument's value is changed within the function that received it, the change is not saved when the application returns to
the point of the function call. Large data structures passed as arguments will be copied as well. A pointer to a data structure
is allowed in a function parameter list, but the argument name must be preceded with the address operator (&) when it is
passed to the function. Inadvertently omitting the address operator in this case usually resulted with a run-time error and core
dump.

With pass-by-reference parameter passing, only the address of the variable is passed. Any changes to the argument's value
will be saved when the application returns to the point of the function call. Pass-by-reference parameter passing is nothing
new to some programming languages such as Pascal. This feature was added to C++ so that references to data types (user-
defined or built-in) could be specified in function parameter lists. This allows passing a complex data structure as an
argument to a function without having to precede it with the address operator.

 4

Operator Overloading
Operator overloading allows the developer to define basic operations (such as /,,, ×−+) for objects of user-defined data
types as if they were built-in data types. For example, a conditional expression such as:

if(s1 == s2)
 {
 ...
 }

is much easier to read than

if(strcmp(s1.getStr(),s2.getStr()) == 0)
 {
 ...
 }

Operator overloading is often referred to as "syntactic sugar."

Generic Programming
One benefit of generic programming is that it eliminates code redundancy. Consider the following function:

void swap(int &first,int &second)
 {
 int temp = second;
 second = first;
 first = temp;
 }

This function is sufficient for swapping elements of type int. If it is necessary to swap two floating-point values, then the
same function must be rewritten using type float for every instance of type int. The basic algorithm is the same. The
only difference is the data type of the elements being swapped. Additional functions must be written in the same manner to
swap elements of any other data type. This is, of course, very inefficient. The template mechanism was designed for generic
programming.

Exception Handling
The exception handling mechanism is a more robust method for handling errors than fastidiously checking for error codes.
It is a convenient means for returning from deeply nested function calls when an exception is encountered. One of the main
features of exception handling is that destructors are invoked for all live objects as the stack of function calls “unwinds” until
an appropriate exception handler is found.

Namespaces
A namespace is a mechanism that avoids global variable name conflicts that may arise due to using various libraries from
different sources. All library functions in the C++ standard are defined in a namespace called std.

Default Arguments
Default arguments can be specified within parameter lists of class constructors and templates. For example, consider the
following class constructor code fragment:

Sports::Sports(string str,int win,int loss,int tie = 0)
 {
 ...
 }

 5

Only the first three parameters of the class constructor require arguments because parameter tie has a default value of 0.
An object created this way might look like:

Sports sp("Mets",94,68);

If a different value for tie is required, the fourth argument must be supplied to override the default value. For example:

Sports sp("Jets",8,8,0);

will assign the value 0 to tie. Most compilers support default arguments for class constructors however default arguments
for templates is very new to the standard, and are not supported by all compilers.

4 Object-Oriented Programming

Please note this chapter is the same as the corresponding Object-Oriented Programming chapter of the Introduction to
Java document.

Programming Paradigms
There are two programming paradigms:
• Procedure-Oriented
• Object-Oriented

Examples of procedure-oriented languages include:
• C
• Pascal
• FORTRAN

Examples of object-oriented languages include:
• C++
• SmallTalk
• Eiffel.

A side-by-side comparison of the two programming paradigms clearly shows how object-oriented programming is vastly
different from the more conventional means of programming:

Procedure-Oriented Programming Object-Oriented Programming
• Top Down/Bottom Up Design • Identify objects to be modeled
• Structured programming • Concentrate on what an object does
• Centered around an algorithm • Hide how an object performs its tasks
• Identify tasks; how something is done • Identify an object’s behavior and attributes

Some Object-Oriented Programming (OOP) Definitions
An abstract data type (ADT) is a user-defined data type where objects of that data type are used through provided functions
without knowing the internal representation. For example, an ADT is analogous to, say an automobile transmission. The
car’s driver knows how to operate the transmission, but does not know how the transmission works internally.

The interface is a set of functions within the ADT that allow access to data.

The implementation of an ADT is the underlying data structure(s) used to store data.

 6

It is important to understand the distinction between a class and an object. The two terms are often used interchangeably,
however there are noteworthy differences. Classes will be formally introduced later in this document, but is mentioned here
due to the frequent use of the nomenclature in describing OOP. The differences are summarized below:

Class Object
• Defines a model • An instance of a class
• Declares attributes • Has state
• Declares behavior • Has behavior
• An ADT • There can be many unique

objects of the same class

Main Attributes of OOP
There are four main attributes to object-oriented programming:
• Data Encapsulation
• Data Abstraction
• Inheritance
• Polymorphism

Data Encapsulation
Data encapsulation separates the implementation from the interface. User access to data is only allowed through a defined
interface. Data encapsulation combines information and an object's behavior.

Data Abstraction
Data abstraction defines a data type by its functionality as opposed to its implementation. For example, the protocol to use a
double-linked list is made public through the supplied interface. Knowledge of the implementation is unnecessary and
therefore hidden.

Inheritance
Inheritance is a means for defining a new class as an extension of a previously defined class. A derived class inherits all
attributes and behavior of a base class, i.e., it provides access to all data members and member functions of the base class,
and allows additional members and member functions to be added if necessary.

The base class and derived class have an “is a” relationship. For example,
• Baseball (a derived class) is a Sport (a base class)
• Pontiac (a derived class) is a Car (a base class)

Polymorphism
Polymorphism is the ability of different objects to respond differently to virtually the same function. For example, a base
class provides a function to print the current contents of an object. Through inheritance, a derived class can use the same
function without explicitly defining its own. However, if the derived class must print the contents of an object differently
than the base class, it can override the base class’s function definition with its own definition. In order to invoke
polymorphism, the function’s return type and parameter list must be identical. Otherwise, the compiler ignores
polymorphism.

Polymorphism is derived from the Greek meaning “many forms.” It is a mechanism provided by an object-oriented
programming language, rather than a programmer-provided workaround.

Advantages of OOP
• The implementation of an ADT can be refined and improved without having to change the interface, i.e., existing code

within an application doesn’t have to be modified to accommodate changes in the implementation.
• Encourages modularity in application development.
• Better maintainability of code yielding less code “spaghetti.”
• Existing code can be reused in other applications.

 7

5 Some C++ Keywords

The keywords defined below are just a subset of the complete C++ keyword list.

• class – used for declaring/defining a class.
• new – allocate storage on the free store (heap).
• delete – deallocate the storage on the free store.

• new and delete are more robust than the C library functions malloc and free.
• inline – used for inline member functions.
• private/protected/public – access specifiers used for data hiding which is a means of protecting data.

• private – not visible outside of the class.
• protected – like private except visible only to derived classes through inheritance.
• public – visible to all applications.

• try/throw/catch – used in exception handling.
• friend – declares a class will full access rights to private and protected members of an outside class without being a

member of that class.
• explicit – prevents implicit conversion of a data type to a particular class that may lead to unexpected surprises:

• array::array(size_t n); creates an array with n elements.
• float max(array const &a); a function that uses the array data type.
• max(m); where m is an integer inadvertently passed to the function. A new array of m elements will be implicitly

created automatically, which is not what was intended.
• virtual – a declaration specifier that invokes polymorphism on a function.
• bool/false/true – used for Boolean logic.

• bool – new data type that can only accept the values true and false.
• false – numerically zero.
• true – numerically one.

6 Basic I/O Differences Between C and C++

Sending Formatted Output to the Standard Output (stdout) Device
In C, the library function printf() is available to display formatted output to stdout:

printf("%s%2d\n","The answer is: ",var);

Since C++ is an extension of C, the printf() function can still be used in a C++ application. However, the overloaded left
shift operator (<<) directed toward the C++ library function cout provides an easier means of sending formatted output:

cout << "The answer is: " << var << "\n";

Obtaining Formatted Input from the Standard Input (stdin) Device
In C, the library function scanf() is available to obtain formatted input from stdin:

scanf("%2d",&var);

Again, the scanf() function can be used in a C++ application, but the overloaded right shift operator (>>) directed away
from the C++ library function cin provides an easier means of obtaining formatted input:

cin >> var;

 8

7 C++ Classes

As mentioned earlier, a C++ class is a user-defined ADT. It encapsulates a data type and any operations on it. A class is also
an extension of a C structure, which is a collection of one or more variables defined under a single name. The biggest
difference between the two is the default access to data members and member functions. By default, data members and
member functions in a class are private, where they are public in a structure. An abstract class is one that contains at least
one pure virtual member function.

A basic C++ class as well as a structure usually contains the following elements:
• Constructor(s) – creates an object.
• Destructor – destroys an object.
• Data members – object attributes.
• Member functions (methods) – operations on the attributes.

Each one of these is demonstrated in a simple example:

class Sports
 {
 private:
 // private data members:
 char *team;
 int win;
 int loss;

 public:
 // constructor and destructor declarations:
 Sports(char *,int,int); // primary constructor
 ~Sports(void); // destructor

 // public member functions:
 char *getTeam(void) const // constant member function
 {
 return team;
 }
 int getWin(void) const // constant member function
 {
 return win;
 }
 void setWin(int w)
 {
 win = w;
 }
 int getLoss(void) const // constant member function
 {
 return loss;
 }
 void setLoss(int l)
 {
 loss = l;
 }
 };

 9

// constructor and destructor definitions:
Sports::Sports(char *str,int w,int l)
 {
 team = new char[strlen(str) + 1]; // allocate storage for type char *
 strcpy(team,str);
 setWin(w);
 setLoss(l);
 }

Sports::~Sports(void)
 {
 delete[] team; // deallocate storage; note use of ‘[]’
 }

C++ comments begin with a double slash (//). Anything after a double slash until the end of the current line is considered a
comment by the compiler. C comments (/* ... */) can still be used in a C++ application as well.

Note that constructors and destructors have the same name as the class and have no return type. The destructor is
declared/defined with a tilde (~) in front of its name.

Also note the use of the scope resolution operator (::) for the constructor and destructor definitions. They were defined
outside of the class, and therefore required their fully-qualified member names so the compiler knows that these definitions
belong to the Sports class.

More than one constructor can be written for a particular class. The different constructor types are:
• Default constructors
• Primary constructors
• Copy constructors

Default Constructors
A default constructor creates objects with specified default values. A default constructor added to Sports might look like:

Sports(void); // declaration

Sports::Sports(void) // definition
 {
 team = new char[8];
 strcpy(team,"No team");
 setWin(0);
 setLoss(0);
 }

The compiler will automatically generate a default constructor if one is not explicitly defined.

Primary Constructors
A primary constructor creates objects with the argument values passed in the constructor parameter list. More than one
primary constructor may be defined for a class. The primary constructor in Sports is declared as:

Sports(char *,int,int); // primary constructor

If the application requires, say, a floating-point value in the parameter list in place of one of the integer values, then a second
constructor can be declared as:

Sports(float,char *,int); // another primary constructor

 10

Note that the order of the parameter list has changed from the first primary constructor. This is to avoid ambiguity between
the two constructor declarations and definitions. The compiler will generate an error message about ambiguity between
constructor parameter lists if the order of the parameters is similar.

Copy Constructors
A copy constructor creates a copy of an object using the current object as a parameter. A copy constructor added to Sports
might look like:

Sports(Sports const &); // declaration

Sports::Sports(Sports const &sp) // definition
 {
 team = new char[strlen(sp.getTeam()) + 1];
 strcpy(team,sp.getTeam());
 setWin(sp.getWin());
 setLoss(sp.getLoss());
 }

8 Class Instantiation

Classes can be instantiated both statically and dynamically. For example, consider a Baseball class that is derived from
Sports. It has the following constructor declaration:

Baseball(string,int,int);

Dynamic Instantiation
An object of type Baseball is dynamically instantiated using operator new as shown in the following statement:

Baseball *bball = new Baseball("Mets",94,68);

This statement declares bball as a pointer to an object of type Baseball containing the values "Mets", 94, and 68.
Once the object is created, any public member functions are called using the name of the pointer to the object and the pointer
indirection operator (->). For example,

bball->getWin();

calls the function getWin(). Since the object is a pointer, it must be deleted to free memory. This is accomplished using
operator delete as shown in the following statement:

delete bball;

The destructor is invoked at this point.

Static Instantiation
An object of type Baseball is statically instantiated using the following statement:

Baseball bball("Mets",94,68);

 11

This statement declares bball as an object of type Baseball containing the values "Mets", 94, and 68. Once the
object is created, any public member functions are called using the name of the object and the structure dot operator (.). For
example,

bball.getWin();

calls the function getWin(). The object remains alive until the scope in which it was created is closed. The destructor is
invoked and the object is deleted.

9 Popular Compilers

Some of the more commonly used compilers are listed below:

• Borland C++ 5.02
• Borland C++ Builder 4.0

• http://www.borland.com/

• Microsoft Visual C++ +6.0

• http://www.microsoft.com/

• Watcom C++ 11.0

• Metrowerks C++ (Mac)

• http://www.metrowerks.com/

• g++ (UNIX)

• http://www.gnu.com/

10 References for Further Reading

The references listed below are only a small sampling of resources where further information on C++ can be obtained:

• C & C++ Code Capsules (book)

• Chuck Allison
• ISBN 0-13-591785-9
• http://www.freshsources.com/

• C/C++ Users Journal (monthly periodical)

• http://www.cuj.com/

• The Annotated C++ Reference Manual (book)

• Margaret Ellis and Bjarne Stroustrup
• ISBN 0-201-51459-1

• 1997 C++ Public Review Document (latest available on-line C++ standard documentation)

• http://www.maths.warwick.ac.uk/cpp/pub/wp/html/cd2/

	Table of Contents
	Introduction
	
	Pass-By-Reference
	Operator Overloading
	Generic Programming
	Exception Handling
	Namespaces
	Default Arguments

	Object-Oriented Programming
	
	Programming Paradigms
	Some Object-Oriented Programming (OOP) Definitions
	Main Attributes of OOP
	Data Encapsulation
	Data Abstraction
	Inheritance
	Polymorphism
	Advantages of OOP

	Some C++ Keywords
	Basic I/O Differences Between C and C++
	
	Sending Formatted Output to the Standard Output (stdout) Device
	Obtaining Formatted Input from the Standard Input (stdin) Device

	C++ Classes
	
	Default Constructors
	Primary Constructors
	Copy Constructors

	Class Instantiation
	
	Dynamic Instantiation
	Static Instantiation

	Popular Compilers
	References for Further Reading

